Math 2A – Vector Calculus – Fall '07 – Chapter 10 Test Name_____ Show your work for credit. Do not use a calculator. Write all responses on separate paper.

- 1. Find a parameterization of the line segment from \vec{r} 2 to \vec{r} 5 where \vec{r} $t = \left\langle \cos \pi t, t^2, \sin \left(\frac{\pi}{2} t \right) \right\rangle$.
- 2. Find a vector function that represents the curve of intersection of the elliptical cylinder $x^2 + 4y^2 = 1$ with the plane x + y + z = 1.
- 3. Find the length of the curve \vec{r} $t = \langle 3\sin t, 3t^{3/2}, -3\cos t \rangle$ on the interval $0 \le t \le \pi$.
- 4. Reparameterize the curve $\vec{r} = \langle e^{2t}, e^{2t} \sin 2t, e^{2t} \cos 2t \rangle$, with respect to arc length measured from the point (1,0,1) in the direction of increasing t.
- 5. Find an equation for the osculating plane of the curve $\vec{r} = \langle 2t, 3t, t^3 + 3t \rangle$ at the point (2, 3, 4).
- 6. A particle starts at (0,0,100) and has initial velocity $\langle 1,2,3 \rangle$ and moves with acceleration $\vec{a} \ t = \langle -0.01,0,-8 \rangle$. Find its position function and determine where it intersects the xy plane.
- 7. Find an equation for the osculating circle at the vertex of the parabola $y = 2 \frac{1}{2} x 1^2$.
- 8. Find the tangential and normal components for the acceleration of a particle whose position function is $\vec{r} = \langle \int \sin \pi u^2 du, \int \cos \pi u^2 du, 1 \rangle$.
- 9. Describe the surface: \vec{r} $u,v = \left\langle 1 + \sin u, 2 + \cos u, \frac{1}{2} + \sin v \right\rangle$
- 10. Find a parametric representation for the part of the hyperboloid $x-1^2+y^2-z^2=1$ that lies to the right of the plane x=1.

Math 2A – Vector Calculus – Fall '07 – Chapter 10 Test Solutions.

1. Find a parameterization of the line segment from \vec{r} 2 to \vec{r} 5

where
$$\vec{r}$$
 $t = \left\langle \cos \pi t, t^2, \sin \left(\frac{\pi}{2} t \right) \right\rangle$.

ANS:
$$\vec{p} \ t = \vec{r} \ 2 + \vec{r} \ 5 - \vec{r} \ 2 \ t = \langle 1, 4, 0 \rangle + \langle -1, 25, 1 \rangle - \langle 1, 4, 0 \rangle \ t = \langle 1 - 2t, 4 + 21t, t \rangle$$

2. Find a vector function that represents the curve of intersection of the elliptical cylinder $x^2 + 4y^2 = 1$ with the plane x + y + z = 1.

ANS:
$$\vec{r} t = \left\langle \cos 3t, \frac{1}{2} \sin 3t, 1 - \cos 3t, -\frac{1}{2} \sin 3t \right\rangle$$
 will do the trick.

3. Find the length of the curve \vec{r} $t = \langle 3\sin t, 3t^{3/2}, -3\cos t \rangle$ on the interval $0 \le t \le \pi$.

ANS:
$$\int_0^{\pi} \sqrt{9\cos^2 t + \frac{81}{4}t + 9\sin^2 t} dt = \frac{3}{2} \int_0^{\pi} \sqrt{4 + 9t} dt = \frac{4 + 9t}{9} \Big|_0^{\pi/2} = \frac{4 + 9\pi^{-3/2} - 8}{9}$$

4. Reparameterize the curve $\vec{r} = \langle e^{2t}, e^{2t} \sin 2t, e^{2t} \cos 2t \rangle$, with respect to arc length measured from the point (1,0,1) in the direction of increasing t.

ANS:

$$s \ t = \int_0^{\infty} \sqrt{4e^{4u} + 2e^{2u}\sin 2t + 2e^{2u}\cos 2t}^2 + 2e^{2u}\cos 2t - 2e^{2u}\sin 2t}^2 du = \int_0^{\infty} \sqrt{4e^{4u} + 4e^{4u} + 4e^{4u}} du = 2\sqrt{3} \int_0^{\infty} e^{2u} du = \sqrt{3} e^{2t} - 1$$

Thus $2t = \ln\left(\frac{s}{\sqrt{3}} + 1\right)$ and substituting for 2t we have

$$\vec{r}$$
 $s = \left\langle \frac{s}{\sqrt{3}} + 1, \left(\frac{s}{\sqrt{3}} + 1 \right) \sin \left(\ln \left(\frac{s}{\sqrt{3}} + 1 \right) \right), \left(\frac{s}{\sqrt{3}} + 1 \right) \cos \left(\ln \left(\frac{s}{\sqrt{3}} + 1 \right) \right) \right\rangle$

5. Find an equation for the osculating plane of the curve \vec{r} $t = \langle 2t, 3t, t^3 + 3t \rangle$ at the point (2, 3, 4).

ANS: \vec{r} ' 1 = $\langle 2,3,6 \rangle$ and \vec{r} " 1 = $\langle 0,0,6 \rangle$ are both in the osculating plane, so their cross product \vec{r} ' 1 × \vec{r} " 1 = $\langle 0,0,6 \rangle$ × $\langle 2,3,6 \rangle$ = $\langle -18,12,0 \rangle$ = $-6\langle 3,-2,0 \rangle$ is normal and choosing d in the equation 3x-2y=d to fit the given point we have 3x-2y=0

6. A particle starts at (0,0,100) and has initial velocity $\langle 1,2,3 \rangle$ and moves with acceleration $\vec{a} \ t = \langle -0.01,0,-8 \rangle$. Find its position function and determine where it intersects the xy plane.

ANS: The velocity is \vec{v} $t = \int_0^{\vec{a}} \vec{u} \ du + \vec{v} \ 0 = \langle 1 - 0.01t, 2, 3 - 8t \rangle$ and so the position is

$$\vec{r} t = \int_0^\infty \vec{v} u \, du + \vec{r} \, 0 = \langle t - 0.005t^2, 2t, 100 + 3t - 4t^2 \rangle$$
 Thus it'll hit the ground when $100 + 3t - 4t^2 = 0 \Leftrightarrow t^2 - \frac{3}{4}t = 25 \Leftrightarrow \left(t - \frac{3}{8}\right)^2 = 25 + \frac{9}{64} \Leftrightarrow t = \frac{3 + \sqrt{1609}}{8}$

7. Find an equation for the osculating circle at the vertex of the parabola $y = 2 - \frac{1}{2} x - 1^2$.

ANS: Taking
$$\vec{r}$$
 $t = \left\langle t, 2 - \frac{1}{2} t - 1 \right\rangle \Rightarrow \vec{r}$ $t = \left\langle 1, -t - 1, 0 \right\rangle \Rightarrow \vec{r}$ $t = \left\langle 0, -1, 0 \right\rangle$ we

have at the vertex, \vec{r} ' 1 = $\langle 1, 0, 0 \rangle$ and

$$\vec{r} \times \vec{r} = \langle 1, 0, 0 \rangle \times \langle 0, -1, 0 \rangle = \langle 0, 0, -1 \rangle$$

$$\kappa = \left| \frac{d\hat{T}}{ds} \right| = \frac{|\hat{T}'|}{|r'|} = \frac{|r'|^2 |\hat{T}| |\hat{T}'|}{|r'|^3} = \frac{|r'|^2 |\hat{T} \times \hat{T}'|}{|r'|^3} = \frac{|r'|^2 |\hat{T} \times \hat{T}'|}{|r'|^3} = \frac{|r'|\hat{T} \times |r'|\hat{T}'|}{|r'|^3} = \frac{|r' \times r''|}{|r'|^3} = 1 \text{ so the radius is the}$$

reciprocal = 1 and the center is (0,1,0) and the equation is $(x-1)^2 + (y-1)^2 = 1$.

8. Find the tangential and normal components for the acceleration of a particle whose position function is $\vec{r} = \langle \int_0^{\pi} \sin \pi u^2 du, \int_0^{\pi} \cos \pi u^2 du, 1 \rangle$.

ANS:
$$\vec{v} \ t = \vec{r}' \ t = \left\langle \sin \pi t^2, \cos \pi t^2, 0 \right\rangle = \hat{T} \ t$$
. Now $s \ t = \int_0^t |r' \ u \ | du = \int_0^t du = t$ so $a_N = \kappa v^2 = \left| \frac{d\hat{T}}{ds} \right| |\vec{r}' \ t \ |^2 = \sqrt{2\pi t \cos 2\pi t^2 + -2\pi t \sin 2\pi t^2} \cdot 1^2 = 2\pi t$ and

$$a_T = \frac{d}{dt} \left| \vec{r} \right| t = \frac{d}{dt} 1 = 0.$$

9. Describe the surface: \vec{r} $u, v = \left\langle 1 + \sin u, 2 + \cos u, \frac{1}{2} + \sin v \right\rangle$

ANS: This is the portion of the cylinder $x-1^2+y-2^2=1$ of radius 1 with axis \vec{r} $t=\langle 1,2,t\rangle$ between $0 \le z \le 1$.

10. Find a parametric representation for the part of the hyperboloid $x-1^2+y^2-z^2=1$ that lies to the right of the plane x=1.

ANS: $x = 1 + \sqrt{1 - y^2 + z^2}$ can be parameterized simply by

$$\vec{r}$$
 $u, v = \left\langle 1 - \sqrt{1 - u^2 + v^2}, u, v \right\rangle$